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Spectral Karyotyping in Cancer Cytogenetics

Eva Hilgenfeld, Cristina Montagna, Hesed Padilla-Nash,
Linda Stapleton, Kerstin Heselmeyer-Haddad, and Thomas Ried

1. Introduction

Cancer is a genetic disease. Gene mutations are not only responsible for rare
hereditary forms of human cancer, but for the sporadic forms of human malig-
nancies as well. Many of these specific genetic defects in cancer cells can be
visualized as chromosomal aberrations. Conventional cytogenetic analysis of
metaphase chromosomes from human malignancies is a first screening step to
identify chromosomal aberrations. Since the introduction of chromosome band-
ing techniques in 1970 by Caspersson et al. (1), significant knowledge of chro-
mosomal aberrations especially in hematologic malignancies as well as
sarcomas has been gained. In these malignancies, specific balanced transloca-
tions were identified and have led to the cloning of the genes involved at many
breakpoints. These aberrations have proven to be of significant etiologic, diag-
nostic, prognostic, as well as therapeutic relevance, especially in leukemias.
While cytogenetic analyses have been exceedingly valuable for the description
of chromosomal abnormalities in hematologic malignancies and in sarcomas,
epithelial cancers were more difficult to study. This is owing, in part, not only
to the accessibility of malignant cells and subsequently metaphases for cytoge-
netic analysis in leukemias, but also to the nature of reciprocal transiocations,
which provided more immediate entry points for positional cloning efforts.

Although cytogenetic methodologies for the analysis of solid tumor speci-
mens have improved, the difficulty in obtaining good-quality metaphase chro-
mosomes remains (2). The interpretation of cytogenetic abnormalities in
epithelial cancers is further confounded by the often vast number and complex
nature of chromosomal aberrations in these tumors. Still, recurrent aberrations
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30 Hilgenfeld et al,
and recurrent chromosomal imbalances have been identified, but their clinical
relevance is less firmly established (2—4).

Some of the limitations of chromosome banding techniques were overcome
by the introduction of molecular cytogenetic techniques such as fluorescence
in situ hybridization (FISH) with chromosome-painting probes and compara-
tive genomic hybridization (CGH) (5-7). For example, in hematologic malig-
nancies, the t(12;21)(p13;q22) was detected by chromosome painting, because
the telomeric regions involved in this translocation are indistinguishable by
banding techniques (8). The 12:21 translocation was ascertained to be the most
common chromosomal aberration in pediatric B-ALL and has been associated
with a favorable prognosis (9). In solid tumors, the application of CGH has led
to the identification of recurrin g patterns of genomic imbalances, both for dif-
ferent tumors and for distinct tumor stages (10,11).

Herein we focus on recently introduced molecular Cytogenetic screening

techniques that allow one to visualize all human metaphase chromosomes in
specific colors.

1.1. Methodology of SKY

Two alternative techniques were developed for color karyotyping: combi-
natorial multifluor FISH (M-FISH) and spectral karyotyping (SKY) (12,13).
Whereas M-FISH employs a conventional imaging approach requiring mul-
tiple exposures through a series of single bandpass filters (12), SKY utilizes a
novel approach by combining Fourier spectroscopy with epifluorescence
microscopy and charge-coupled device (CCD)-imaging, thereby measuring the
entire spectrum at all points in a single exposure (13,14).

For SKY, 24 differentially labeled chromosome libraries are produced by
amplifying flow-sorted chromosomes utilizing a degenerate oligonucleotide
primed polymerase chain reaction (DOP-PCR) (15). Subsequently, the probes
are labeled through the incorporation of either haptenized (biotin and
digoxigenin) or directly labeled nucleotides, again via PCR. The use of five
fluorochromes, either alone or in combination, allows one to discern up to 31
targets simuitaneously. The generated chromosome-specific probes are pooled,
precipitated with an excess of Cot-1 DNA to suppress repetitive sequences
(suppression hybridization), and hybridized onto metaphase chromosomes. The
use of an epifluorescence microscope equipped with a single, custom-designed
triple bandpass filter allows for the simultaneous cxcitation of all fluoro-
chromes as well as measurement of the entire emission spectrum of one
metaphase in a single exposure. The emitted light from each point of the

metaphase is passed through the collection optics and subsequently the Sagnac
interferometer, where an optical path difference is created. The resulting inter-
ferogram is measured for every pixel of the CCD camera and, using Fourier
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transformation, is converted to spectral information. The spectral image can be
displayed first in RGB colors (obtained by assigning red, green, and blue to
specitic sections of the emission spectrum) to evaluate the quality of the
hybridization (i.e., homogeneity). Every pixel with the same spectral informa-
tion is subsequently assigned a pseudo-color allowing the spectral classifica-
tion of all chromosomes (14). Figure 1A~C shows a metaphase of the human
bladder carcinoma cell line HT1197 displayed in the RGB colors with the
accompanying 4,6-diamidino-2-phenylindole (DAPI)-image, and the SKY
classification colors.

1.2. Advantages and Limitations

SKY, which is a screening tool, combines the respective advantages of chro-
mosome banding techniques with the advantages of FISH. SKY is especially
usetul for the detection of interchromosomal structaral aberrations that lead to
color changes of the aberrant chromosome, such as translocations and inser-
tions. It therefore facilitates the identification of cryptic translocations as well
as the clarification of complex aberrations. In addition, SKY assists in the iden-
tification of material not recognizable by banding techniques such as marker
and ring chromosomes. Other aberrations important in tumor cytogenetics such
as double minute chromosomes as well as homogeneously staining regions,
which are aberrations that harbor amplified DNA sequences, can be better
resolved and contribute to the identification of critical oncogenes. Since its
introduction, the value of SKY for use in cancer cytogenetics has been amply
demonstrated (for a review, see ref. 16).

Limitations of the technique pertain to intrachromosomal changes, such as
para- or pericentric inversions as well as small deletions or duplications that do
not lead to a color change or change in size of the respective aberrant chromo-
some, which then can be identified more readily in conjunction with the
inverted DAPI image or other banding techniques. However, very small marker
chromosomes or double minute chromosomes cannot in all instances be classi-
fied unambiguously, perhaps owing to the fact that their euchromatin content
is low. Therefore, for a comprehensive analysis of tumor metaphases, a combi-
nation of molecular cytogenetic methods and banding techniques is advocated.

1.3. Applications of SKY

The usefulness of SKY for cancer cytogenetics, of hematologic malignan-
cies as well as solid tumors, has been shown (for a review, see ref. 16).
Although the difficulty in obtaining good metaphase chromosomes from pri-
mary solid tumors remains, SKY analysis of the often complex karyotypes
contributes to a more comprehensive cytogenetic analysis and might assist in
the identification of stage-specific aberrations (17-19).
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In contrast to the common assumption that cytogenetic changes in cell
lines are frequently the result of culture artifacts, the molecular cytogenetic
analysis of tumor cell lines showed that the karyotype is surprisingly stable
after years of culturing (20~22). Furthermore, results of the SKY analysis of
pancreatic cell lines correlated well with those of the CGH analysis of primary
tumors (21). In contrast to CGH, SKY can detect the specific type of aberra-
tions that result in chromosomal gains, the amplification of putative oncogenes
(e.g., duplications, double minute chromosomes, homogeneously staining
regions, jumping translocations), as well as loss of chromosomal material that
may harbor tumor suppressor genes [e.g., deletions, isochromosomes such as
i(17)(q10)]. Therefore, SKY analysis might not only contribute to the compre-
hensive analysis of complex aberrations, but also to our understanding of the
mechanisms leading to these changes (23).

Mouse models of human disease become more and more important for our
understanding of malignancies. As they often can be studied at earlier stages of
carcinogenesis, they hold the promise for identification of tumor-initiating
events as well as the dissection of genetic events responsible for tumor pro-
gression. Nevertheless, the analysis of mouse chromosomes is challenging
because mouse chromosomes are all acrocentric and of similar size. The adap-
tation of SK'Y to the mouse karyotype by Liyanage et al. (24,27) has proven to
be a very valuable tool in the analysis of several mouse models (24-28). Compre-
hensive SKY analyses have shown that chromosomal aberrations in the afore-
mentioned mouse tumors are similar to the changes in the respective human
tumors, thereby validating these models. Figure 1D-F displays a mouse
metaphase in the RGB, inverted DAPI, and SKY classification colors.

1.4. Further Tools and Future Goals

To collect the increasing amount of emerging SKY data and to expedite the
identification of new recurrent tumor or tumor stage-specific aberrations, a
database has been developed (www.ncbi.nlm.nih.gov/sky/skyweb.cgi).

This database is linked to the Cancer Chromosome Aberration Project
(CCAP) (www.ncbi.nlm.nih.gov/CCAP), which integrates the physical and
sequence maps with the cytogenetic map of the human genome (29). This
project provides STS-tagged and sequenced BAC clones for the entire human
genome, whose cytogenetic location has been determined by high-resolution
FISH mapping with a resolution of 1 to 2 Mb. CCAP facilitates the high-reso-
lution mapping of chromosomal breakpoints and the subsequent cloning of the
genes located at the breakpoints, and potentially will provide new diagnostic
tools for interphase cytogenetics (29).

Furthermore, the combination of a comprehensive cytogenetic analysis with
gene and protein expression profiling will provide in the near future a wealth
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of information on the consequences of chromosomal aberrations in cancer, and
it is hoped that this will identify entry points for the identification of new thera-
peutic targets and strategies.

2. Materials
2.1. Preparation of SKY Kits

SO S .

IS

8.

9.
10.
11
12.
13.
14.

PCR cycler.

Gel electrophoresis setup.

Speedvac.

Temperature-controlled microcentrifuge.

Primer: Telenius 6 MW(5'-CCGACTCGAGNNNNNNATGTGG-3") (100 pM).
Nucleotides for DNA amplification: 100 maf dNTPs, 2 mM stock solution
{Boehringer Mannheim, Indianapolis, IN).

Nucleotides for labeling:

Spectrum Orange dUTP (Vysis, Downers Grove, IL); dilute 1:5 to 0.2 mM.
Texas Red dUTP (Molecular Probes, Eugene, OR); dilute 1:5 to 0.2 mM.
0.1 mM Rhodamine 110-dUTP (Perkin-Elmer, Foster City, CA).

{ mM Biotin-16-dUTP (Boehringer Mannheim).

{ mM Digoxigenin-11-dUTP (Boehringer Mannheim).

For the labeling PCR, prepare a stock solution of dNTPs with a final concen-
tration of dATP, dCTP, and dGTP of 2 mM, but only 1.5 mM of dTTP.
Polymerase: native Tag (5 U/ul) (MBI Fermentas).

Buffer: 10X PCR Buffer (MBI Fermentas).

Human Cot-1 DNA (1 mg/mL) (Life Technologies, BRL, Grand Island, NY).
Salmon sperm DNA (9.7 mg/mL) (Sigma, St. Louis, MO).

3 M Na-acetate.

Deionized formamide (pH 7.0).

Master mix: 20% dextran sulfate in 2X saline sodium citrate (SSC), pH 7.0; auto-
clave and store aliquots at -20°C.

-0 0 T

2.2. Pretreatment, Denaturation, and Hybridization of Slides for SKY

[SSIN SR

10.
11
12.

13.

e

Thermomixer or water bath.

Hot plate.

Shaker.

Hybridization chamber at 37°C.

2X 88C.

RNase A (stock solution: 20 mg/mL) (Boehringer Mannheim).
Pepsin (stock solution: 100 mg/mL) (Sigma).
0.01 N HCL.

1X Phosphate-buffered saline (PBS).

X PBS/MgCl, (50 mM).

1% Formaldehyde in 1X PBS/MgCl, (50 mM).
Ethanol (70, 90, 100%).

70% Formamide/2X SSC (pH 7.0).
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2.3, Detection

- 30% Formamide/2X SSC (adjust to pH 7.0).

. IX 8sC.
3. 4X SSC/Tween-20 (0.1%).
- Blocking Solution: 3% bovine serum albumine (BSA) (Boehringer Mannheim)
in 4% SSC/Tween-20; store at 4°C.
5. 1% BSA (Boehringer Mannheim) in 4X SS5C/Tween-20.

. DAPIL: 80 ng/mL in 2X SCC (stock solution: 2 mg of DAPI/10 mL of sterile water).
- Antifade: Dissolve 100 mg of 1,4-phenylencdiamine in 2 ml. of 1X PBS. Adjust
pH with carbonate-biocarbanate buffer (pH 9.0) to 8.0, add 1X PBS to 10 mL,
mix with 90 mL of 86% glycerol, aliquot and store at —20°C, and protect from light
during use,
. Mouse antidigoxin (Sigma).
. Fluorolink-Cy5-avidin (Jackson Immuno Research, West Grove, PA).
. Fluorolink-Cy5.5-sheep-antimouse-IgG (Amersham Pharmacia Biotech,
Buckinghamshire, UK).

. Image Acquisition and Analysis

. Epifluorescence microscope equipped with a DAPI filter and SKY filter V 3.0
(Chroma Technology, Brattleboro, VT).

. 150-W Xenon lamp (Opti-Quip, Highland Mills, NY).

. SpectraCube™SD200, Spectral Imaging Acquisition Software, and SkyView™
software (Applied Spectral Imaging, Migdal Ha’Emek, Israel).

3. Methods

The protocols in this chapter are for SKY analysis of human chromosomes.
Nevertheless, the procedure is quite similar for the mouse genome. Further
information and protocols can be obtained from the following website:
www.riedlab.nci.nih.gov.

3.1. Preparation of SKY Kits
3.1.1. Primary DOP-PCR

Flow-sorted chromosomes are amplified by PCR using a DOP as described
by Telenius et al. (15). The DNA amplification with DOPs is sequence unspe-
cific. Therefore, employment of sterile techniques is extremely important in
order to avoid contamination with genomic DNA.

Each chromosome-specific primary PCR product is labeled with a single
fluorescent dye in a second DOP-PCR step for quality control purposes. Indi-
vidual hybridization of all painting probes onto normal control slides should
result only in specific hybridization signals for the respective pair of homolo-
gous chromosomes with low overall background. Otherwise, the primary PCR
product cannot be used for the secondary and labeling DOP-PCR.
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3.1.2. Secondary DOP-PCR

The primary PCR products are further amplified in a second DOP-PCR.
Great precautions should be taken to avoid contamination also during this step.

1.

2

3.

4.

Mix the following components for the PCR reaction: 2 uL of DNA (150~ 200 ng),
10 pL of PCR buffer (10X), 8 uL of MgCl, (25 mM), 10 ul. of dNTP (2 mM), 65 pL.
of dH,0, 4 uL, of primer (100 mM), | uL of Taq polymerase (5 U/uL) for a total
volume of 100 pl..

Run the following DOP-PCR program:

a. Step 1: 94°C for 1 min.

b. Step 2: 56°C for 1 min.

¢. Step 3: 72°C for 3 min with addition of 1 s/cycle.
d. Step 4: Repeat steps 1-3, 29 times.

e. Step 5: 72°C for 10 min.

f. Step 6: 4°C for co.

Of the PCR product, run 2 pL. on a 1% agarose gel as a quality control (intense
smear between 300 bp and 2 kb).
Frecze DNA at —20°C.

3.1.3. DOP-PCR for Labeling

Five different fluorochromes (either directly labeled or haptenized nucle-
otides) are used to accomplish the differential labeling of 24 painting probes.
Table 1 was devised in order to achieve good color differences among chro-
mosomes.

1.

2

The setup in Table 1 leads to 57 reactions. Label 57 autoclaved PCR tubes
accordingly.

. Mix the following components for the PCR reaction: 4 uL. of DNA (400--600 ng),

10 pL of PCR buffer (10X), 8 uL. of MgCl, (25 mM), 5 pL. of dNTP (2 mM),
dTTP (1.5 mM), 65 uL (for direct)/67 uL (for indirect) of dH,0, 2 L. of primer
(100 mM), 1 L of Tag polymerase (5 U/mL); x-dUTP: 5 pl. of Rhodamine 110
(0.1 mM), 5 L of Spectrum Orange (0.1 mM), 5 pL. of Texas Red (0.2 mM), 3 pL.
of biotin (1 mM), 3 pL of digoxigenin (1 mM) for a total volume of 100 KL,
Run the following PCR prograni:

a. Step 1: 94°C for 1 min.

b. Step 2: 56°C for 1 min.

Step 3: 72°C for 3 min with addition of 1 s/cycle.

Step 4: Repeat steps 1-3, 29 times.

Step 5: 72°C for 10 min.

. Step 6: 4°C for oo,

Run 2 pL of each DNA on a 1% agarose gel as a quality control (intense smear
between 500 bp and 2 kb).

One SKY Kit should be precipitated according to the protocol in Subheading
3.1.4. and hybridized onto normal chromosomes to assess the quality. If the SKY

-0 0
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Table 1
Labeling Scheme

Rhodamine Spectrum Texas Cy?5 Cy 5.5
Chromosome 110 Orange Red (biotin) (digoxigenin)
1 X X
2 X
3 X X X
4 X X
5 X X X X
6 X
7 X X
8 X
9 X X X
10 X X
11 X
12 X X X X
{3 X
14 X
15 X X X
16 X X X
17 X
I8 X X X
19 X
20 X X X
21 X X
22 X X X X
X X X
Y X X X X

Kit is of good quality, the automated classification of a normal metaphase using
the SkyView software should be correct. The following points should be evalu-
ated for quality assessment:

a.
b.

The overall painting homogeneity as well as the suppression of hieterochromatin.
The signal-to-noise ratio: Using the software for image acquisition, the high-
est and lowest values for the fluorescence intensity within the image are dis-
played. A difference of at least 100 counts between the intensity along
chromosomes and background must be achieved.

The color separation between chromosomes displayed in red, green or blue in
the RGB image.

The spectra of the single dyes: The spectra of this test hybridization should be
compared with and should match the reference spectra stored in the combina-
torial table (ctb)-file.
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6.

If the quality of the test hybridization was good, all SKY Kits can be precipitated
and stored at —20°C until further use.

3.1.4. Precipitation of SKY Kits

L.

2

oW

7.
8.

Combine 4 {L of each chromosome-painting probe (400--600 ng), 20 pl. of human
Cot-1 DNA and 1 pL of salmon sperm DNA in an Eppendorf tube for every SKY Kit.
Add 1/10 vol of 3 M Na-acetate and 2.5 to 3.0 times the total volume of cold
100% ethanol.

Vortex and precipitate at ~20°C overnight or at -80°C for 30 min.

Centrifuge the precipitated DNA at 4°C and 11,700g for 30 min.

Remove the supernatant and dry the DNA pellet in a Speedvac for 5--10 min.
Add 6 pL of deionized formamide (pH 7.0), and shake in a thermomixer at 37°C
until the pellet is completely dissolved (at least 1 h).

Add 6 L of Master Mix, vortex, and spin briefly.

Store SKY Kits at —20°C until used for hybridization.

3.2. Preparation of Metaphase Chromosomes

Metaphase chromosome preparation for SKY follows standard cytogenetic
protocols (30). Best hybridization results are generally obtained with slides
aged for 1 wk either at room temperature or in a drying oven at 37°C, if they
are exposed to humidity at room temperature. Prepared slides can be stored for
several years in an airtight container with desiccant at -20 or -80°C after dehy-
dration through an ethanol series.

3.3. Pretreatment, Denaturation, and Hybridization of Slides for SKY
3.3.1. Pretreatment of Slides

1.
2.

P

@]

10.
1
12.

Equilibrate slides in 2X SSC (room temperature).
Dilute the RNase stock 1:200 in 2X SSC, apply 120 pL per slide, and cover with
a 24 x 60 mm coverslip.

Incubate at 37°C for 60 min.

Prepare 100 mL of 0.01 N HCI, adjust to pH 2.0, and prewarm at 37°C.

Remove the coverslips and wash three times for 5 min each in 2X SSCon a
shaker at room temperature.

Pepsin treatment: Add 5-30 L. of pepsin to a Coplin jar, and then add 100 mL of
prewarmed HCI, and incubate the slides at 37°C for 2 min (see Note 1).

Wash twice for 5 min each in 1X PBS at room temperature, shaking.

Wash once for 5 min in 1X PBS/MgCl,.

Incubate the slides for 10 min at room temperature in 1% formaldehyde in 1X
PBS/MgCl, for postfixation.

Wash again one time for 5 min in 1X PBS at room temperature, shaking.
Dehydrate the slides in 70, 90, and 100% ethanol for 3 min each.
Let the slides air-dry {see Note 1).
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3.3.2. Denaturation of SKY Kit

I.
2.
3.

Prewarm SKY Kits at 37°C for 30 min.
Denature SKY Kits at 80°C for 5 min in a thermomixer or water bath,
Before applying to the slide, allow the SKY Kit to preanneal at 37°C for 1 to 2 h.

3.3.3. Slide Denaturation

1.

2.

Apply 120 uk. of 70% formamide/2X SSC to a 24 x 60 mm coverslip and touch
slide to coverslip.

Denature the slides at 75°C on a slide warmer for 1 min, 30 s. Denaturation of
slides can also be performed by preheating 70% formamide/2X SSC in a Coplin
jar in a water bath to 72°C. This is especially applicable for G-banded slides, for
which denaturation times are shorter (10-30 s).

. Shake off the coverslips and immediately place the slides in freshly prepared

4.

70% ethanol (precooled to 0°C) for 3 min, followed by 3 min in 90% and 100%
ethanol each.
Let the slides air-dry.

3.3.4. Hybridization

I

2.

After preannealing, add the SKY Kit to the preselected hybridization area on the
denaturated slides and cover with an 18-mm? coverslip.

Seal the coverslips with rubber cement and incubate in a hybridization chamber
at 37°C for 48 h. Drying out of the SKY Kit during the hybridization time should
be avoided.

. Detection

. Prepare solutions (formamide/SSC, 1X SSC, 4X S§SC/Tween-20) and prewarm

at 45°C for 30 min before starting the detection.

. After the hybridization time, carefully remove the rubber cement and dip the

slides in formamide/SSC until the coverslips slide off (see Note 2).

. Wash the slides three times for 5 min each in formamide/SSC, shaking.

. Wash the slides three times for 5 min each in 1X SSC, shaking.

. Dip the slides in 4X SSC/Tween-20.

. Incubate the slides with blocking solution (120 UL/slide, covered with a 24 x 60 mm

coverslip) in a hybridization chamber at 37°C for 30 min.

. Spin all the fluorescent dyes for 3 min at 13,000 rpm.
. Dip the slides in 4X SSC/Tween-20.
. Add 120 uL. of antibody solution containing mouse antidigoxin (1:200 dilution in

1% BSA) per 24 x 60 mm coverslip, touch the slide to the coverslip, and incubate
in a hybridization chamber for 1 h at 37°C.

. Wash the slides three times for 5 min each in 4X SSC/Tween-20, shaking.
. Add 120 pl of antibody solution containing avidin-Cy5 and Cy5.5 antimouse

(1:200 dilution in 1% BSA each) per coverslip (24 x 60 mm), touch the slide to
the coverslip, and incubate in a hybridization chamber for 1 h at 37°C.
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12. Wash the slides three times for 5 min each in 4X SSC/Tween-20, shaking.

13. Stain with DAPI for 5 min in a light-protected Coplin jar.

{4. Wash for 5 min in 2X 88C, shaking.

15. Dehydrate the slides in an ethanol series (70, 90, 100%) for 3 min each.

16. Let the slides air-dry in the dark.

17. When the slides are completely dry, apply 30 L. of antifade, cover with 24 x 60 mm
coverslips, and store in the dark at 4°C until image acquisition.

3.5. Image Acquisition and Analysis

For each metaphase, a spectral image and the corresponding DAPI image is
acquired using an epifluorescence microscope connected to the SpectraCube
(Applied Spectral Imaging; a combination of a Sagnac-Interferometer and a
CCD-camera). For the spectral image, a custom-designed SKY filter (Chroma)
is employed; the DAPI image is acquired using the TR1-filter (Chroma). The
subsequently inverted DAPI-image gives a chromosomal banding pattern com-
parable with the one obtained by G-banding (Fig. 1B,E). During image acqui-
sition, beat protection filters should normally be placed into the light pass but
can be removed if the intensity of the fluorescent dyes with emission in the far
red range (Cy3 and Cy5.5) is weak.

For image analysis, the spectral image is first displayed in RGB (red-
green-blue) colors. This allows for the evaluation of hybridization quality
(Fig. 1A,0). Using the SkyView software, both the spectral and the DAPI
image are then analyzed simultaneously. Through correlation of the spectral
information with the labeling scheme and the reference spectra of the five
fluorescent dyes (stored in a ctb-file) a specific pseudocolor is assigned to
each image point. Thus, all material belonging to the same chromosome will
be displayed in the same pseudocolor, and chromosomal aberrations will be
easily visible (Fig. 1C, F).

4. Notes

1. Pretreatment with pepsin to remove residual cytoplasm is a crucial step
because overtreatment with pepsin leads to reduced signal intensity and
impaired chromosome morphology and therefore compromises SKY results.
Pepsin concentration and time must therefore be adjusted according to the
amount of cytoplasm; that is, use low concentrations of pepsin (5-10 uL;
2 min) if there is little cytoplasm, and 20-30 L, 5 min, for cells with high
amounts of cytoplasm. Cytoplasm is visible as opaque material around the
metaphase chromosomes. If no cytoplasm is present, pepsin treatment may
not be necessary at all.

During the detection avoid exposure to light as much as possible and avoid air-
drying of the slides between the different steps. Slides should be handled care-
fully in order to avoid scratching the surfaces.

o
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